Overview of ESP

Ensemble Streamflow Prediction

LEC Trace Conscribe

Introduction to ESP

ESP Statistical Analysis

Computing the Input Ensemble

Currently Implemented Methods

- Straight climate
- Linear Blending with QPF
- Distribution shifts based on long range forecasts
- 24 hour stochastic storm generation
- 24 hour stratified sampling

....Computing the Input Ensemble

More research is required

- Current methods for computing the input precipitation ensemble are cumbersome.
 They are either:
 - computationally expensive or,
 - difficult to implement on many basins or,
 - ► too simplistic.

A New Approach

Designed for national implementation

- Uses existing data streams
- Can be implemented over numerous basins
- Can be implemented relatively quickly

Deriving the Forecast Distribution

Given QPF

Pre-Processor

General Blending Procedure

Ensemble Post Processor

Removing Bias and Accounting for Uncertainty

- Hydrologic models are biased
 - Monthly means
 - Daily flow frequency distribution
- Necessary to produce probabilistic river stage forecasts
 - ► Ensemble forecasts must be adjusted to give valid probability information

Ensemble P

Bias in the M

Long-term monthly
means of modeled daily
flow are biased relative
to observed daily flow

Ensemble P

Adjusted Flow Freque

Effect of ESP Post
Processor should not be analyzed by looking at an individual trace, but by looking at the adjusted distribution

